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Functions

Definition (Function)

A function from a set A to a set B is a rule that assigns to each object in A, one and
only one object in B. We write this f : A→ B. A is called the domain; B is called the
range or image

Some examples:

• Production function: Y =
[
Kθ + Lθ

]1/θ
. A = R2

+ and B = R+

• Budget constraint: m =
∑n
i=1 pixi. A = Rn++ × Rn+ and B = R+

Definition (One-to-one function)

A function f : A→ B is one-to-one or injective on a subset C ⊂ A if and only if for
every x, y ∈ C,

f(x) = f(y) ⇒ x = y

i.e. each b ∈ C is the image of precisely one element of C. E.g. y = x3 is one-to-one
while y = x2 is not

• When f : A→ B is one-to-one on C ⊂ A, f−1 (the inverse function of f) assigns
to each b ∈ f(C) the unique point in C which mapped to it
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Continuity and differentiability

Definition (Continuity)

Let f : Rk → Rm and let x0 ∈ Rk and y = f(x0) be its image. The function f is
continuous at x0 if whenever {xn}∞n=1 is a sequence in Rk which converges to x0, then
the sequence {f(xn)}∞n=1 in Rm converges to f(x0). The function f is said to be
continuous if it is continuous at every point in its domain

E.g. y = 1/x is continuous everywhere except at x = 0 because limx→0+ f(x)→ +∞
and limx→0− f(x)→ −∞

Definition (Univariate differentiability)

The derivative of a function f : R→ R at x0 is

df

dx
(x0) = lim

h→0

f(x0 + h)− f(x0)

h
(1)

The function f is called differentiable if the above limit exists. The derivative is also
denoted f ′(x0)

All differentiable functions are continuous but the converse is not true: y = |x| is not
differentiable at x = 0
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Rules for computing derivatives

Let f(x), g(x) : R→ R and k be an arbitrary constant. Then,

d

dx
(f(x) + g(x)) = f ′(x) + g′(x) (2)

d

dx
(kf(x)) = kf ′(x) (3)

d

dx
(f(x) · g(x)) = f ′(x)g(x) + f(x)g′(x) (4)

d

dx

(
f(x)

g(x)

)
=
f ′(x)g(x)− f(x)g′(x)

g(x)2
(5)

d

dx

(
xk
)

= kxk−1 (6)

d

dx
(lnx) = 1/x (7)

d

dx
(exp(x)) = exp(x) (8)
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Multivariate differentiation

Definition (Partial derivative)

Let f : Rn → R. Then for each variable xi at each point x0 = (x0
1, . . . , x

0
n), define the

partial derivative of f with respect to xi as

∂f

∂xi
(x0

1, . . . , x
0
n) = lim

h→0

f(x0
1, . . . , x

0
i + h, . . . , x0

n)− f(x0
1, . . . , x

0
i , . . . , x

0
n)

h
(9)

if this limit exists. The partial derivative of F with respect to xi is also denoted Fxi or
Fi.

Example: let f(x, y) = 3x2y3, then:

∂f

∂x
= 6xy3

∂f

∂y
= 9x2y2
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Implicit functions

• An implicit function of the endogenous variable y as a function of the exogenous
variables (x1, . . . , xn) is written as G(x1, . . . , xn, y) = 0

• The implicit function theorem (IFT) allows us to determine how the endogenous
variable changes in response to a change in one of the exogenous variables

Definition (Implicit function theorem)

Let G(x1, . . . , xn, y) be a continuously differentiable (C1) function around
(x∗1, . . . , x

∗
n, y
∗). Assume further that (x∗1, . . . , x

∗
n, y
∗) satisfies:

G(x∗1, . . . , x
∗
n, y
∗) = c

∂G

∂y
(x∗1, . . . , x

∗
n, y
∗) 6= 0

Then there is a C1 function y = y(x1, . . . , xn defined on an open ball around
(x∗1, . . . , x

∗
n) such that for each i ∈ {1, . . . , n}:

∂y

∂xi
(x∗1, . . . , x

∗
n) = −

∂G
∂xi

(x∗1, . . . , x
∗
n, y
∗)

∂G
∂y

(x∗1, . . . , x
∗
n, y∗)

(10)
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Example

• Consider an individual with utility function defined over two goods x and y:
U(x, y)

• An indifference curve is defined as
{

(x, y) : U(x, y) = U
}

• We can use the IFT to calculate the slope of the indifference curve (the marginal
rate of substitution):

∂U

∂x
dx+

∂U

∂y
dy = 0

dy

dx
= −

∂U
∂x
∂U
∂y

• Assuming that utility is strictly increasing in both goods → MRS is decreasing
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Unconstrained optimization

• Let U ⊂ Rn and F : U → R. A point x∗ ∈ U is a max of F on U if
F (x∗) ≥ F (x) ∀x ∈ U

Theorem (First-order necessary conditions)

If x∗ is a local critical point of F and x∗ is an interior point of U then

∂F

∂xi
(x∗) = 0 ∀i = 1, . . . , n (11)

• Example: Let F (x, y) = x2 − 6xy + 2y2 + 10x+ 2y − 5; its critical points are
found by solving:

Fx = 2x− 6y + 10 = 0

Fy = −6x+ 4y + 2 = 0,

which yields: (x∗, y∗) = (13/7, 6/7)
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Unconstrained optimization

Theorem (Second-order sufficient conditions)

Let F : U → R be twice continuously differentiable (C2) in U , and let x∗ be a critical
point of F . Define the Hessian of F as

H ≡ D2F (x∗) =


∂2F
∂x21

(x∗) · · · ∂2F
∂xnx1

(x∗)

...
. . .

...
∂2F
∂x1xn

(x∗) · · · ∂2F
∂x2n

(x∗)

 (12)

1. If H is negative definite, i.e. if x′Hx < 0 ∀x ∈ U , then x∗ is a strict local max of F

2. If H is positive definite, i.e. if x′Hx > 0 ∀x ∈ U , then x∗ is a strict local min of F

3. If H is indefinite, the x∗ is neither a local max nor a local min of F
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Unconstrained optimization

Theorem

Let f : Rn → R be C2 and let x∗ be a critical point of f (i.e. fxi = 0 ∀i = 1, . . . , n)
and that the n leading principal minors of H alternate in sign:

|fx1x1 | < 0,

∣∣∣∣ fx1x1 fx2x1
fx1x2 fx2x2

∣∣∣∣ > 0,

∣∣∣∣∣∣
fx1x1 fx2x1 fx3x1
fx1x2 fx2x2 fx3x2
fx1x3 fx2x3 fx3x3

∣∣∣∣∣∣ < 0, . . . (13)

at x∗. Then x∗ is a strict local max of f .
If all the leading principal minors of H are all positive then x∗ is a strict local min of f
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Concave and convex functions

Definition (Concave and Convex functions)

A real-valued function f : Rn → R is concave if ∀ x, y ∈ Rn and λ ∈ [0, 1]

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y) (14)

f is convex if ∀ x, y ∈ Rn and λ ∈ [0, 1]

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (15)

Theorem

Let f : Rn → R be C2. Then f is concave if and only if its Hessian matrix is negative
semidefinite ∀ x ∈ Rn. f is convex if and only if its Hessian matrix is positive
semidefinite ∀ x ∈ Rn
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Constrained optimization

• We are interested in solving problems of the type:

max
x1,...,xn

f(x1, . . . , xn) (16)

subject to:

g1(x1, . . . , xn) ≤ b1, . . . , gk(x1, . . . , xn) ≤ bk (17)

h1(x1, . . . , xn) = c1, . . . , hk(x1, . . . , xn) = cm (18)

• f is the objective function

• {gi} are inequality constraints

• {hj} are equality constraints

• xi ≥ 0 non-negativity constraints
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Equality constraints

Theorem (Lagrangian)

Let f , h1, . . . , hm be C1 functions. Suppose that x∗ is a local max of f in the constraint
set {x : h1(x) = c1, . . . , hm(x) = cm} and assume that rank of the Jacobian matrix of
first-derivatives of the constraints with respect to x,

J ≡ Dh(x∗) =

 ∂h1/∂x1 · · · ∂h1/∂xn
...

. . .
...

∂hm/∂x1 · · · ∂hm/∂xn

 (19)

is m. Then there exist λ∗1, . . . , λ
∗
m such that (x∗1, . . . , x

∗
n, λ
∗
1, . . . , λ

∗
m) is a critical point

of the Lagrangian

L(x, λ) ≡ f(x)−
m∑
j=1

λj [hj(x)− cj ] (20)

That is,

∂L
∂xi

(x∗, λ∗) = 0 ∀i = 1, . . . , n

∂L
∂λj

(x∗, λ∗) = 0 ∀j = 1, . . . ,m
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Example

max
x1,x2

U = α lnx1 + (1− α) lnx2

s.t.:

p1x1 + p2x2 = m

• Lagrangian: L = α lnx1 + (1− α) lnx2 − λ[p1x1 + p2x2 −m]

• FOC:

[x1] : α/x1 − λp1 = 0

[x2] : (1− α)/x2 − λp2 = 0

[λ] : p1x1 + p2x2 −m = 0

• Using the first two FOC: p2x2 = 1−α
α
p1x1. Plugging this back into the the third

FOC yields:

(x∗1, x
∗
2, λ
∗) =

(
αm

p1
,

(1− α)m

p2
,

1

m

)
• Notice that J (x∗) = (p1 p2) has rank 1
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Inequality constraints
• We want to solve the following problem:

max
x1,...,xn

f(x1, . . . , xn) (21)

subject to:

g1(x1, . . . , xn) ≤ b1, . . . , gK(x1, . . . , xn) ≤ bK (22)

x1 ≥ 0, . . . , xn ≥ 0 (23)

The Lagrangian is given by:

L = f(x)−
K∑
k=1

λk[gk(x)− bk] +

n∑
i=1

µixi (24)

• The FOC are:
∂L
∂xi

(x∗) ≤ 0, ∀i = 1, . . . , n

xi
∂L
∂xi

(x∗) = 0, ∀i = 1, . . . , n

∂L
∂λk

(x∗) ≥ 0, ∀k = 1, . . . ,K

λk
∂L
∂λk

(x∗) = 0, ∀k = 1, . . . ,K

λk, µi ≥ 0, ∀k = 1, . . . ,K, i = 1, . . . , n 16 / 37



Exercise

• An individual enjoys utility from consumption c and leisure l; he has one unit of
time that he can devote to work n at the wage w or enjoy leisure

• Find the optimal allocation of consumption, leisure and working hours that
maximizes the consumer’s utility subject to his budget and time allocation
constraints, i.e.

max
c,n,l

log c+ al, a > 0

s.t.:

c ≤ wn
l + n ≤ 1

c, n, l ≥ 0

• Write the Lagrangian of the problem

• Show that the non-negativity constraint for consumption cannot be binding

• Under what conditions will the consumer devote all his time to working?
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Envelope theorem
• How does the optimal value of an objective function changes as one parameter

changes?

Theorem (Envelope theorem)

Let f, h1, . . . , hk : Rn × R→ R be C1 functions. Let x∗(a) denote the solution of the
problem of maximizing f(x; a) on the constraint set {h1(x; a) = 0, . . . , hk(x; a) = 0}
for any fixed parameter a. Then,

d

da
f (x∗(a); a) =

∂L

∂a
(x∗(a), µ(a); a) (25)

• Go back to the example in Slide # 18. We want to know how does the utility of
the individual changes when his income increases

• Plugging (x∗1, x
∗
2) into the objective function, you obtain the ‘value function’:

V (p1, p2,m) = α ln

(
αm

p1

)
+ (1− α) ln

(
(1− α)m

p2

)
→ ∂V

∂m
=

1

m

• Which is equal to ∂L
∂m

= λ∗ = 1
m
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Markov chains

Definition
A time-invariant Markov chain is defined by a triple of objects:

(i) A vector of dimension n× 1, x ∈ Rn, that records the possible values of the state
of the system,

(ii) An n× n matrix P which records the probabilities of moving from one value of the
state to another in one period,

Pij = Prob(xt+1 = xj |xt = xi)

(iii) A n× 1 vector π0 recording the probabilities of being in each state i at time 0,

π0 = Prob(x0 = xi)

We need P and π0 to satisfy the following conditions:

(i) For all i = 1, . . . , n,
∑n
j=1 Pij = 1

(ii)
∑n
i=1 π0i = 1

P is called a stochastic matrix
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Example

• Suppose an individual can be in either of two states: employed, e, and
unemployed, u

• Also, suppose that at the beginning of her life this individual has an equal chance
to be employed or unemployed

• Every period, the probability that an unemployed individual stays unemployed is
50%. The probability that an employed individual moves into unemployment is
4.3%

• Let’s characterize the Markov chain governing this individual’s employment status:

x = {u, e}, (state space)

π0 = [0.5 0.5]′, (initial state probability)

P =

[
puu pue
peu pee

]
=

[
0.5 0.5

0.043 0.957

]
(stochastic matrix)
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An example — a realization of {xt}
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realization of xt

x = {u, e},
π0 = [0.5 0.5]′,

P =

[
puu pue
peu pee

]
=

[
0.5 0.5

0.043 0.957

]
.
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Asymptotic distribution of P
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• If, at any given point in time, you take a large sample of individuals whose
employment status is governed by the the Markov process I showed you before,
you’d find that approximately 92% would be employed, and the remaining 8%
would be unemployed
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Dynamic programming: intuition

• A dynamic programming (DP) problem is an optimization problem in which
decisions have to be taken sequentially over several time periods

• Periods are usually ‘linked’ in the sense that actions taken at a particular point
affect the reward possibilities in future periods

• In practice this is achieved by defining a state variable, which restricts the set of
actions available to the decision-maker at any point in time

• In turn, the decision-maker’s actions affect the value of the state variable(s)
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Dynamic programming: definitions

Definition
A DP problem is defined by a tuple {X,Γ(x), F, β}, where:

(i) X is the state space of the problem,

(ii) Γ(x) is the feasible set given a particular state x,

(iii) F is the one-period reward function,

(iv) β is the discount factor
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Dynamic programming

• We are interested in solving problems of the form:

max
{xt+1}∞t=0

∞∑
t=0

βtF (xt, xt+1) (26)

s.t.:

xt+1 ∈ Γ(xt), t = 0, 1, 2, . . . (27)

x0 ∈ X given. (28)

• This representation of the problem is called a sequential problem

• i.e. the decision-maker begins from some fixed state x0 ∈ X at t = 0

• The set of actions available at t = 0 is given by xt+1 ∈ Γ(x0)

• After choosing x1, the decision-maker obtains a reward F (x0, x1)

• In t = 2, the available options for the decision-maker are xt+2 ∈ Γ(x1)

• The problem in period 2 looks exactly the same, the only difference is that we
start with state x1 instead of x0. And so, we keep going...

25 / 37



Deterministic neoclassical growth model
• This is how the SP problem looks like:

max
{ct,it}∞t=0

∞∑
t=0

βt ln(ct) (29)

s.t.:

yt = kαt (30)

ct + it = yt (31)

kt+1 = (1− δ)kt + it (32)

k0 > 0 given (33)

• Simplifying:

max
{kt+1}∞t=0

∞∑
t=0

βt ln
[
kαt + (1− δ)kt − kt+1

]
(34)

• Notice that the individual enters every period with a given capital stock kt, and
then he chooses kt+1. Knowing both kt and kt+1 determines the level of
consumption

• In this representation, kt is the state variable and kt+1 is the action/control
variable
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Dynamic programming: intuition

• Suppose that the problem above has already been solved for every value of x0

• Then we could define a function v : X → R as follows:

v(x0) = max
x∈Γ(x0)

∞∑
t=0

βtF (xt, xt+1) (35)

• We call v(x0) a value function. It tells us the value of the maximized objective
function for a given value of the state variable

• Similarly, v(x1) would give us the maximum utility value that the decision-maker
can achieve from period 1 afterwards given his/her state x1 Then,

v(x0) = max
x1∈Γ(x0)

F (x0, x1) + βv(x1)︸ ︷︷ ︸
=
∑∞
t=0 β

tF (xt,xt+1)

 (36)

• This is called the recursive representation of a DP

• A solution for the DP problem specified above is a policy rule, g : X → Γ(x)
which specifies the optimal action at each stage as a function of the state variable
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The Principle of optimality

Theorem
The value function v satisfies the Bellman equation at each x ∈ X:

v(x) = max
x′∈Γ(x)

{
F (x, x′) + βv(x′)

}
(F)

where x′ denotes the next-period value of x

• Note that the solution to (F) is a function, not just a number. This is called a
functional equation
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The Principle of optimality

• Here’s the cool thing (if you throw in some extra technical conditions), we can
take whatever initial guess for v, call it v0...

• and we can iterate on the following recursion:

vj+1 = max
x∈Γ(x)

{
F (x, x′) + βvj(x

′)
}

(37)

until ‖vj+1 − vj‖ < ε and we will converge to the solution of (F)!

• You can see that these conditions make this problem very amenable to be solved in
a computer
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Deterministic neoclassical growth model

• Now let’s write the problem in a recursive way (write up the Bellman equation).
Let ′ denote the future value of a variable

• Notice first that c > 0 this means that given k, k′ ∈ [0, f(k) + (1− δ)k) ⇒
Γ(k) = [0, f(k) + (1− δ)k)

• The Bellman equation of this problem is then:

v(k) = max
k′∈[0,kα+(1−δ)k)

{
ln[kα + (1− δ)k − k′] + βv(k′)

}
(38)

30 / 37



Intuition on how to solve this in the computer

• Create a grid of N points for the state variable k, K = [k1, k2, . . . , kN ] around the
steady state

• We want to find the value function v(k). This function will provide a value for
each point in the grid. Hence v(k) will be a N × 1. vector v(k) = [v1, v2, . . . , vN ]

• Start with an initial guess for v(k) (it can be whatever you want, for instance the
zero vector), call it v0(k)

• Now we construct the recursion over which we’re going to iterate. For every k
today, we will choose k′ that maximizes

ln(kα + (1− δ)k − k′) + βv0(k′) (39)

we’re going to create a big N ×N matrix, where future capital k′ goes in the rows
and current capital k goes in the columns. Let me show you how the first
component of it looks like.
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Intuition on how to solve this in the computer

ln(kα + (1− δ)k − k′) looks like this:
ln[kα1 + (1− δ)k1 − k1] ln[kα2 + (1− δ)k2 − k1] · · · ln[kαN + (1− δ)kN − k1]
ln[kα1 + (1− δ)k1 − k2] ln[kα2 + (1− δ)k2 − k2] · · · ln[kαN + (1− δ)kN − k2]

...
...

. . .
...

ln[kα1 + (1− δ)k1 − kN ] ln[kα2 + (1− δ)k2 − kN ] · · · ln[kαN + (1− δ)kN − kN ]


For the second component, notice two things: (i) v0(k′) is of size N × 1 and (ii) it only
depends on future capital k′

βv0(k) · [1 · · · 1]1×N = β


v0(k1) v0(k1) · · · v0(k1)
v0(k2) v0(k2) · · · v0(k2)

...
...

. . .
...

v0(kN ) v0(kN ) · · · v0(kN )


You add these two components, and then for each column (current capital) you choose
the row (future capital) that maximizes this objective function
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Intuition on how to solve this in the computer

• For each column i = 1, . . . N you will have a new maximized value. So you end up
with a new vector v1(k) = [v1(k1) · · · v1(kN )]

• Then, you compare v0(k) and v1(k), if they’re close enough ‖v1(k)− v0(k)‖ < ε,
stop. You’ve solved the problem. Otherwise, continue iterating

• You also know the maximizing value of future capital (for example, for current
capital k = k3, the level of future capital that maximizes the objective is k′ = k5).

• When you have achieved convergence, you also find the policy rule, that tells you
what should be the optimal future capital k′ for whatever value of current capital k
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Stochastic dynamic programming

• What happens when we add stochastic shocks to our DP problem?

• For instance, in the one-sector growth model that we just saw, we can add
productivity shocks that affect production every period

• More specifically, let zt be an AR(1) process:

zt = ρzt−1 + εt, ε
i.i.d.∼ N (0, σ2

ε) (40)

• Production now looks like this: yt = exp(zt)k
α
t

• Now we combine dynamic programming with Markov chains!
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Stochastic dynamic programming

• Timing: assume that in period t, before you make a decision of how much capital
to choose for t+ 1, you observe a realization εt drawn from a Normal distribution
with mean 0 and variance σ2

ε

• Since you already knew zt−1, you can compute zt = ρzt−1 + εt

• z becomes a new state variable in our dynamic programming in addition to k

• To optimally choose kt+1 all you need to know is your capital in period t, kt, and
the value of the productivity shock in period t, zt

• zt is called an exogenous state, since its not influenced by the actions of the
decision-maker

• The other important difference, is that now the decision-maker needs to forecast
the future evolution of z since we’re now interested in the expected value of our
value function conditional on zt, Et[V (k′, z′)]
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Stochastic dynamic programming

• The Bellman equation of our new problem is:

v(k, z) = max
k′∈[0,exp(z)kα+(1−δ)k)

{
ln[exp(z)kα+(1−δ)k−k′]+β

∑
z′

P (z′|z)V (k′, z′)
}

(41)

• P is the stochastic matrix associated to the Markov-chain approximation of the
{zt}

• We can solve this problem in a similar fashion as we solved the deterministic
problem. The main difference is that the state space is bigger (when we are
creating the matrices that I showed you before, the dimensions are going to be
N ×Nz, where Nz is the number of grid points for the approximation for zt

• As you can see, the number of points in the state space grows exponentially. You
cannot add too many state variables to your problem, otherwise it will be
impossible to solve it! This is called the Curse of Dimensionality
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