Macroeconomics: Economic Cycles, Frictions and Policy

The Real Business Cycle Model
Practice Problems
September 2019

1. Consider the following non-stochastic version of the real business cycle model. The social planner's problem is:

$$\max_{C_t, K_{t+1}, L_t} \mathcal{U} = \sum_{t=0}^{\infty} \beta^t u(C_t, L_t)$$
subject to:
$$u(C, L) = \ln(C) + \phi \ln(L)$$

$$C_t + I_t = Y_t$$

$$Y_t = K_t^{\alpha} N_t^{1-\alpha}$$

$$K_{t+1} = (1 - \delta)K_t + I_t$$

$$L_t + N_t = 1$$

$$K_0 > 0 \text{ given.}$$
(1)

Where C_t , K_t , L_t , N_t denote respectively, consumption, physical capital, leisure and hours worked. $\beta \in (0,1)$ is the discount factor, $\alpha \in (0,1)$ is the share of income that accrues to capital, $\delta \in (0,1)$ is the depreciation rate of physical capital and $\phi > 0$ determines the importance of leisure on the individual's utility relative to consumption.

- (a) Rewrite problem (1) as an unconstrained maximization problem in which the social planner has to choose the optimal quantities of future capital, K_{t+1} and individuals' labor input, N_t .
- (b) Solve for the first-order necessary conditions that characterize the solution to the unconstrained problem that you defined in part (a).
- (c) Compare the solution you obtained in part (b) with the first-order necessary conditions you would obtain in a two-period model in which consumers have the same momentary utility (i.e. $u(C, L) = \ln(C) + \phi \ln(L)$ in each period) and they take as given their income stream $\{Y_1, Y_2\}$ and the real interest rate r. Are the solutions to these problems different?
- 2. A Simple Calibration Exercise: Assume that individuals live for one period and derive utility from consumption c and leisure ℓ . Individual preferences are given by $u(c,\ell) = \ln(c-\overline{c}) + \alpha \ell$, where $\overline{c} > 0$ is a subsistence level of consumption and $\alpha > 0$. The individual has 1 unit of time which can be used to work in the market for a real wage w, or for leisure.
 - (a) Write down the individual's budget constraint.
 - (b) Solve for the optimal allocation of consumption, c, and hours worked, $1-\ell$.
 - (c) In 1995, the typical worker in the U.S. spent about one-third of his available time working in the market. In contrast in 1830, the average worker spent 55 percent of his available time working (i.e. $(1 \ell)_{1830} = 0.55$ and $(1 \ell)_{1995} = 0.33$). On the other hand, the real wage in the U.S. in 1995 was 9.15 times the wage rate of 1830 (i.e. $w_{1830} = 1$ and $w_{1995} = 9.15$). Use the expression you found in part (b) for the fraction of time devoted to work

¹Note that because the natural logarithm is only defined for strictly positive values, this utility function implies that consumers really need to satisfy their basic needs \bar{c} . Otherwise their level of utility would be $-\infty$.

for 1830 and 1995 to solve for \bar{c} and α . What was the share of subsistence consumption in total consumption \bar{c}/c in 1830 and 1995? Interpret your results.

3. Table 1 provides business cycle statistics for the U.S. economy for the period 1948:1-2016:2. Based on the information provided in the Table answer the following questions:

Figure 1: Business Cycle Statistics for the U.S. 1948:1-2016:2

Variable	Standard	Relative Standard	First-order	Cross-correlation with GDP						
	Deviation	Deviation	Autocorrelation	t-3	t-2	t-1	t	t+1	t+2	t+3
GDP	0.0166	1.00	0.848	0.339	0.611	0.848	1.000	0.848	0.611	0.339
Wages	0.0094	0.57	0.683	-0.051	-0.026	0.051	0.138	0.171	0.172	0.159
GDP deflator	0.0092	0.55	0.908	0.102	0.063	-0.028	-0.149	-0.260	-0.363	-0.438
Investment	0.0753	4.53	0.804	0.123	0.421	0.691	0.874	0.780	0.603	0.381
Hours	0.0197	1.18	0.902	0.551	0.754	0.877	0.879	0.701	0.441	0.178
Output per worker	0.0110	0.66	0.717	-0.435	-0.237	0.052	0.399	0.470	0.503	0.458
Durable consumption	0.0449	2.70	0.692	-0.078	0.191	0.435	0.638	0.629	0.537	0.415
Non-durable consumption	0.0129	0.78	0.818	0.130	0.374	0.603	0.777	0.766	0.644	0.466
Unemployment rate	0.0083	0.50	0.893	-0.554	-0.774	-0.898	-0.881	-0.687	-0.416	-0.152

- (a) Which variables have a cyclical component more volatile than GDP?
- (b) What variable exhibits the highest degree of persistence over the business cycle? Which one the least?
- (c) Which variables are procyclical and which ones countercyclical?
- (d) Determine whether each variable is leading, lagging or coincident with GDP.