The Real Business Cycle (RBC) Model

Macroeconomics: Economic Cycles, Frictions and Policy

Alejandro Riaño

University of Nottingham, GEP, CFCM, and CESifo

September 5, 2019

Outline

- 1 Introduction
- 2 Basic RBC model
 - Social Planner's problem
 - Recursive competitive equilibrium
- 3 Calibration
- 4 Fitting the model to data
- 5 Impulse-response analysis
- 6 Key questions
- References

Introduction

- Business cycle research studies the causes and consequences of the recurrent expansions and contractions in aggregate economic activity
- The idea that economic fluctuations are caused primarily by real factors has gone
 in and out of fashion several times over the last century
- In the 1930s, Burns and Mitchell began to document the existence of a remarkable set of business cycle regularities over time and across countries
- Simultaneity of movement of economic variables over the cycle → predict expansions and contractions
- Interest in the business cycle waned after the publication of Keynes' General Theory
- Shift towards explaining the forces that determine the level of economic output at a point in time (conditional on the prior history of the economy)

Introduction

- RBC's main contribution to economics → growth and cyclical fluctuations can be studied using the same model: The Neoclassical Growth Model!
- From an analytical perspective, RBC models emphasized the use of stylized artificial economies for assessing those features of actual economies that are important for business cycles
- Short-term fluctuations arise from individuals' desire to inter-temporally substitute current and future consumption and intra-temporally substitute consumption and leisure as an optimal response to shocks in the economy's production possibility set

The stochastic neoclassical growth model

- RBC model = the Solow model + endogenous saving + labor supply decision + stochastic productivity shocks
- Preferences: There is a large number of infinitely-lived agents with expected utility

$$\mathcal{U} = \mathbb{E}_0 \sum_{t=0}^{\infty} b^t u(C_t, L_t), \quad b > 0$$
 (1)

- ullet The momentary utility function u(C,L) is increasing in both arguments and strictly concave
- In order to have a steady-state, we need u(C, L) to take the form:

$$u(C,L) = \begin{cases} \frac{[C^{1-\zeta}L^{\zeta}]^{1-\sigma}}{1-\sigma}, & \text{if } \sigma > 0 \text{ and } \sigma \neq 1\\ (1-\zeta)\ln(C) + \zeta\ln(L), & \text{if } \sigma = 1 \end{cases}$$
 (2)

with $\zeta \in (0,1)$

• Time endowment: $L_t + N_t = 1$

The stochastic neoclassical growth model

Technology: Production requires capital and labor inputs:

$$Y_t = A_t F(K_t, X_t N_t) \tag{3}$$

ullet The production function F is continuous, twice-differentiable, concave and homogeneous of degree 1. Moreover, F satisfies the Inada conditions:

$$\lim_{K \to 0} F_K(K, N) \to \infty \tag{4}$$

$$\lim_{K \to \infty} F_K(K, N) = 0 \tag{5}$$

- Technical progress is labor-augmenting
- A is a stochastic productivity shock, and X_t is the deterministic component of productivity, $X_{t+1}/X_t = \gamma > 1$ (the same g_A as in the Solow model with exogenous technological change)
- Resource constraint: $C_t + I_t = Y_t$
- Capital accumulation: $K_{t+1} = (1 \delta)K_t + I_t$, with $\delta \in [0, 1]$
- Initial conditions: A_0 , K_0 , $X_0 > 0$ given

Detrending the growth model

- Since we're interested in the fluctuations around the growth path, we detrend all variables (except L_t and N_t) by dividing by X_t
- For any variable Y_t , let $y_t \equiv Y_t/X_t$
- The detrended model looks as follows:

$$\max_{\{\{c_t\},\{k_{t+1}\},\{L_t\}\}_{t=0}^{\infty}} \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t u(c_t, L_t) \right], \quad \beta \equiv b \gamma^{1-\sigma}$$
 (6)

s.t.:

$$c_t + i_t = y_t \tag{7}$$

$$y_t = A_t F(k_t, N_t) \tag{8}$$

$$L_t + N_t = 1 (9)$$

$$\gamma k_{t+1} = (1 - \delta)k_t + i_t \tag{10}$$

- Without loss of generality, we assume $X_0=1\Rightarrow X_t=\gamma^t$
- RBC models often omit growth all together or simply start with the transformed economy

Optimal capital accumulation

- Let's assume that $\gamma=1.$ Capital variables now denote aggregate variables and let $A_t=e^{z_t}$
- The Social Planner problem involves choosing allocations of capital, consumption and leisure that maximize the representative consumer's utility subject to the aggregate resource constraints

$$\max_{\{\{C_t\}, \{K_{t+1}\}, \{L_t\}\}_{t=0}^{\infty}} \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t u(C_t, L_t) \right] \text{ s.t.:,}$$

$$C_t + I_t = Y_t \tag{11}$$

$$K_{t+1} = (1 - \delta)K_t + I_t \tag{12}$$

$$Y_t = e^{z_t} F(K_t, N_t) \tag{13}$$

$$z_{t+1} = \rho z_t + \varepsilon_{t+1}, \quad \varepsilon \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_{\varepsilon}^2)$$
 (14)

$$L_t + N_t = 1 (15)$$

$$K_0 > 0$$
 given

- Because there are no market failures in this model (no externalities, no public goods, no imperfect competition, no information failures) \rightarrow First welfare theorem holds \rightarrow CE=PO
- Notice that there are no prices involved in the Social Planner's problem

Social Planner's problem

We can write the problem more succinctly as follows:

$$\max_{K_{t+1}, N_t} \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t u \left(e^{z_t} F(K_t, N_t) + (1 - \delta) K_t - K_{t+1}, 1 - N_t \right) \right]$$
 (16)

The recursive formulation of this problem is given by:

$$v(K,z) = \max_{K',N} \left\{ u\left(e^z F(K,N) + (1-\delta)K - K', 1-N\right) + \beta \sum_{z'} P(z'|z)v(K',z') \right\}$$
(17)

The FOCs and the envelope theorem yield:

$$u_C(C_t, 1 - N_t) = \beta \mathbb{E}_t \left[u_C(C_{t+1}, 1 - N_{t+1}) \left[e^{z_{t+1}} F_K(K_{t+1}, N_{t+1}) + 1 - \delta \right] \right]$$
(18)

$$u_L(C_t, 1 - N_t) = u_C(C_t, 1 - N_t) \left[e^{z_t} F_N(K_t, N_t) \right]$$
(19)

Steady state

- We set z equal to its unconditional mean of 0. In steady state: $C_t = C_{t+1} = C, \quad K_t = K_{t+1} = K, \quad N_t = N_{t+1} = N \quad \forall t$
- From the FOCs:

$$F_K(K, N) = (1/\beta) - 1 + \delta$$

$$F_K(K, N) = r + \delta$$

$$u_L(C, 1 - N) = u_C(C, 1 - N)F_N(K, N)$$
(20)

- Because F(K,N) is homogeneous of degree 1, both $F_K(K,N)$ and $F_N(K,N)$ are homogeneous of degree $0 \to F_K(K,N) = F_K(K/N,1)$
- The capital-labor ratio of the economy is going to be pinned down by the parameters β and δ
- Since the capital-labor ratio is fixed, so will be the real wage $F_N(K/N,1)$
- This in turn will determine the optimal trade-off between current consumption and leisure

Decentralized equilibrium

- Many times the conditions for the 1st welfare theorem do not hold and the competitive equilibrium doesn't coincide with the allocation chosen by the SP
- Need to solve for the decentralized competitive equilibrium
- This means defining the problem of households and firms with their respective constraints, and having prices that will guarantee that all markets clear
- The problem of the firm is static: every period it rents capital and labor from households at prices r_t and w_t to produce a single consumption good (with price normalized to 1)
- The problem of the firm is:

$$\max_{K_t, N_t} \left\{ e^{z_t} F(K_t, N_t) - r_t K_t - w_t N_t \right\}, \quad \forall t$$
 (FP)

FOCs:

$$r_t = e^{z_t} F_K(K_t, N_t) \tag{22}$$

$$w_t = e^{z_t} F_N(K_t, N_t) \tag{23}$$

Household's problem

• The problem of households is:

$$\max_{\{\{c_t\},\{k_{t+1}\},\{l_t\}\}_{t=0}^{\infty}} \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t u(c_t,l_t) \right]$$
 s.t.:
$$c_t + i_t = w_t(z,K)n_t + r_t(z,K)k_t$$

$$k_{t+1} = (1-\delta)k_t + i_t$$

$$n_t + l_t = 1$$

$$K_{t+1} = (1-\delta)K_t + I_t$$

$$z' = \rho z + \varepsilon'$$

$$k_0 > 0 \text{ given}$$
 (HP)

- Notice that households need to form expectations about the evolution of the aggregate stock of capital K and the productivity shock z, because these two determine factor prices w(z,K) and r(z,K)
- This is not particularly important in this context in which there is a representative individual, since individual and aggregate decisions are consistent by construction, but matters a lot in models with heterogeneous consumers or firms

Recursive competitive equilibrium

Definition (Recursive competitive equilibrium)

A recursive competitive equilibrium for this economy consists of a value function v(z,k,K); a set of decision rules, $g_c(z,k,K)$, $g_n(z,k,K)$ and $g_k(z,k,K)$ for the household; a corresponding set of aggregate per capita decision rules $G_c(z,K)$, $G_n(z,K)$ and $G_k(z,K)$; and factor price functions, w(z,K) and r(z,K), such that these functions satisfy:

- (i) the household problem (solves problem [HP])
- (ii) that firms maximize profits (solves problem [FP])
- (iii) the consistency of individual and aggregate decisions, that is, $g_c(z,k,K)=G_c(z,K),\ g_n(z,k,K)=G_n(z,K)$ and $g_k(z,k,K)=G_k(z,K)$, for all (z,K); and
- (iv) the aggregate resource constraint: $G_c(z,K) + G_k(z,K) = Y(z,K) + (1-\delta)K$

- Remember our initial question: does a model designed to be consistent with long-term economic growth produce the sort of fluctuations that we associate with the business cycle?
- We know the main ingredients of the model. Now we need to choose functional forms for technology and preferences and for the parameters of the model
- We want our model to display balanced growth (Kaldor facts # 1 and #2)
- Moreover, we want the shares of labor and physical capital in national income to be constant (Kaldor fact # 4). Cobb-Douglas technology:

$$Y_t = e^{z_t} K_t^{\alpha} N_t^{1-\alpha}, \tag{24}$$

where α is the share of output that is paid to capital owners if capital is paid its marginal product

• Remember from the steady-state conditions:

$$F_K(K,N) = r + \delta,$$

$$\alpha \left(\frac{K}{N}\right)^{\alpha - 1} = r + \delta$$

$$\frac{K}{N} = \left(\frac{\alpha}{r + \delta}\right)^{\frac{1}{1 - \alpha}}$$
(25)

• Notice that the Cobb-Douglas production implies $K/Y = (K/N)^{1-\alpha}$ in steady state. Therefore:

$$\frac{K}{Y} = \left(\frac{\alpha}{r+\delta}\right) \tag{26}$$

just as Kaldor fact # 5!

• From the law of motion for capital: $K_{t+1} = (1 - \delta)K_t + I_t$, in steady state:

$$\delta K = I$$

$$\Rightarrow \frac{I}{Y} = \delta \frac{K}{Y}$$

$$\Rightarrow \frac{C}{V} = 1 - \frac{I}{V}$$
(27)

• Again, remember from the steady-state conditions:

$$r = (1/\beta) - 1 \tag{29}$$

- Given an average annual return on the SP-500 index of 6.5% (0.065/4 = 0.0163 quarterly) implies a discount factor $\beta=1/(1+r)=1/1.0163=0.984$
- Given that we know α and r, we can use the equation determining K/Y in steady state, to choose δ such that $K/Y \approx 3.3$

$$\delta = \frac{\alpha}{(K/Y)} - r = \frac{.36}{3.3} - 0.0163 = 0.0928 \tag{30}$$

Productivity process: taking logs of the Cobb-Douglas production function

$$z_t = \ln(Y_t) - \alpha \ln(K_t) - (1 - \alpha) \ln(N_t)$$
(31)

- If you regress z_t on a linear trend, you can compute γ (the deterministic component of productivity)
- Using the residuals from this regression, estimate ρ , the persistence of the productivity process, z_t , and the standard deviation of the productivity innovations σ_{ε}
- Using quarterly data for the US you obtain: $\rho=0.979$ and $\sigma_{\varepsilon}=0.007$

 For the postwar period per-capita hours worked in the marketplace remained roughly constant despite a continuous increase in the real wage. This suggest using preferences of the form:

$$u(c_t, l_t) = \frac{\left[c_t^{1-\zeta} l_t^{\zeta}\right]^{1-\sigma} - 1}{1-\sigma}$$
(32)

- However, non-market time ≠ leisure very interesting secular changes on this margin
- A common parametrization for preferences is to assume that $\sigma = 1$, so

$$u(c,l) = (1-\zeta)\ln(c) + \zeta\ln(l) \tag{33}$$

Model vs. data

RBC-generated moments

Table 3
Business cycle statistics for basic RBC model a,b

	Standard deviation	Relative standard deviation	First-order autocorrelation	Contemporaneous correlation with output
Y	1.39	1.00	0.72	1.00
C	0.61	0.44	0.79	0.94
I	4.09	2.95	0.71	0.99
N	0.67	0.48	0.71	0.97
Y/N	0.75	0.54	0.76	0.98
w	0.75	0.54	0.76	0.98
r	0.05	0.04	0.71	0.95
A	0.94	0.68	0.72	1.00

^a All variables have been logged (with the exception of the real interest rate) and detrended with the HP filter.
Source: King & Rebelo (1999)

- $\sigma_{\text{model}}(Y) = 0.77 \sigma_{\text{data}}(Y) \Rightarrow 1.39/1.81 = 0.77$
- $\sigma_{\rm model}(I)/\sigma_{\rm model}(Y)=2.93$ and $\sigma_{\rm data}(I)/\sigma_{\rm data}(Y)=2.95$
- $\sigma_{\rm model}(C_{nd})/\sigma_{\rm model}(Y)=0.44$ and $\sigma_{\rm data}(C_{nd})/\sigma_{\rm data}(Y)=0.74$
- $\sigma_{\mathsf{model}}(N)/\sigma_{\mathsf{model}}(Y) = 0.48$ and $\sigma_{\mathsf{data}}(N)/\sigma_{\mathsf{data}}(Y) = 0.984$
- ullet corr_{model} (w,Y) is too high

Impulse-response analysis ($\rho = 0$)

Source: King & Rebelo (1999)

Impulse-response analysis ($\rho = 0$)

Impulse-response analysis

- Suppose that $\varepsilon_0=1$ and $\varepsilon_t=0, \ \forall t>0$: The economy suffers a temporary positive productivity shock. What happens to the main aggregates in the economy?
- \bullet To fix ideas, let's assume that $\rho=0\Rightarrow$ this is a purely transitory productivity shock
- $W_0 = e^{z_0} (1 \alpha) Y_0 / N_0 \uparrow \Rightarrow N_0 \uparrow$
- The increase in N_0 amplifies the increase in Y_0 ($\uparrow 2\%$)
- What to do with this extra output? should individuals consume it all today?
- Consumers have a preference for consumption smoothing: they will increase C_0 but not 1-1 with output; the extra output is invested $(I_0 \uparrow \text{ by 8\%})$
- Main implication of the RBC model: the high volatility of investment doesn't arise because of "animal spirits" as suggested by Keynes. It is just the flip-side of consumption smoothing!
- What happens after period 0?
- The economy needs to shed the excess capital that it accumulated (gradually) by $\uparrow C$ and $\uparrow L$. The signal for consumers to do so is a lower real interest rate
- The propagation of shocks is very weak: we're unlikely to see several periods of high/low output

Impulse-response analysis

- Now, let's see what happens when we set ho=0.979 the value consistent with the observed Solow residuals for the US economy
- The same mechanisms are at work as before, but these effects are now drawn out over time
- ullet Productivity is going to be above average for a extended period $\to \uparrow N$ and $\uparrow I$
- You can see that some time after the shock hits, the response of consumption, investment and labor looks very similar to the case of a transitory productivity shock
- The early part of the impulse responses is dominated by the fact that the productivity shock raises the desirability of work effort, production, investment and consumption
- The latter part is dominated by the reduction of capital back toward its stationary level
- With many periods of high output, there will be positive correlation between output and its past values: expansions and recessions will persist for many periods

Impulse-response analysis ($\rho = 0.976$)

Impulse-response analysis ($\rho = 0.976$)

Simulated model with "small" productivity shocks

Modern DSGE models

- The RBC model does not admit any role for changes in monetary policy to affect business cycle fluctuations
- For monetary policy to play a role → nominal rigidities = limits to price adjustments
- We also need firms that have some market power to set their own prices → monopolistic competition as in Romer (1990)
- Prices are set by multi-period contracts; each period some fraction of contracts expire and prices can be changed
- Price adjustment → New Keynesian Phillips curve:
 - Inflation depends on next period's expected inflation
 - The output gap
- Central bank operates according to a 'Taylor rule'. The nominal interest rate increases
 - More than one-for-one with inflation
 - When output is above its natural rate

Key questions:

- Explain what are the main assumptions underlying the benchmark RBC model
- Write explicitly the decision problem faced by individuals in the RBC model both in sequential and recursive form. What are the state variables? What variables does the individual choose?
- What is the mechanism in the RBC model that results in consumption being less volatile than output, and output in turn being less volatile than investment?
- Explain intuitively how consumption, investment, savings and work effort in this economy respond to a transitory improvement in total factor productivity

References

- King, R. and S. Rebelo. 1999. "Resuscitating Real Business Cycle Models", in John Taylor and Michael Woodford, eds., Handbook of Macroeconomics vol. 1A. Amsterdam: Elsevier. Chapter 14
- Prescott, E. 1986. "Theory Ahead of Business Cycle Measurement" Federal Reserve Bank of Minneapolis Quarterly Review