The Search \& Matching Model of Unemployment

Macroeconomics: Economic Cycles, Frictions and Policy

Alejandro Riaño

University of Nottingham, GEP, CFCM, and CESifo
September 6, 2019

Outline

(1) Motivation
(2) The matching function
(3) The Beveridge curve
(4) Job creation
(5) Wage curve
(6) Steady-state equilibrium
(7) Comparative statics

Job creation and job destruction

Figure 5. Quarterly Job Flows in Manufacturing, Seasonally Adjusted, 1947-2004

Source: Authors' tabulations and splicing of data from the MTD, LRD and BED. See text for details.
Source: Davis, Faberman and Haltiwanger (2006)

More than 10% of U.S. workers separate from their employers each quarter!

Motivation

- Why are so many people unemployed at the same time that there are many vacancies that go unfilled?
- Trade in the labor market is a decentralized activity
- It is uncoordinated, time-consuming and costly for both firms and workers
- Because both firms and workers have to spend resources before job creation and production can take place \rightarrow jobs command rents in equilibrium
- This contrasts with the instantaneous adjustment that characterized the Walrasian labor market we have assumed so far

Main assumptions

- There is a measure L of infinitely-lived, risk-neutral individuals $\rightarrow u(c)=c$
- We abstract from the consumption/saving decision of individuals
- The discount factor for both workers and firms is $\beta=(1+r)^{-1}$
- Their objective is therefore to maximize expected present discounted income
- Each firm employs at most 1 worker
- Each firm-worker match produces y units of output (sold at a price of 1)
- All unemployed workers search for jobs (no extensive margin of labor force)
- Only unemployed workers search for jobs (no on-the-job search)
- No differences in job search intensity (no search effort)
- Firm-worker matches end exogenously \rightarrow neither firms nor workers have an incentive to terminate their relationship once they've been matched

Matching function

- We assume the existence of an aggregate matching function \rightarrow number of jobs formed at any moment in time as a function of the number of workers looking for jobs and the number of firms looking for workers
- The matching function is an aggregate object. It summarizes the outcome of the investment of resources by firms and workers in the trading of labor resources as a function of the inputs
- The idea behind the matching function is to capture the fact that heterogeneity, frictions and information imperfections are pervasive in the labor market
- Think about an urn-ball problem: Firms are urns and workers are balls. Assume that all workers and firms are ex-ante identical
- If only one worker can occupy each job, an uncoordinated application process will lead to overcrowding in some jobs and no applications in others
- The friction here is the lack of information about other workers' actions

Matching function

Matching function

- Let u denote the unemployment rate (the fraction of unmatched workers) and v the vacancy rate (the number of vacancies as a fraction of the total labor force)
- The number of job matches occurring in the economy every period is given by:

$$
\begin{equation*}
m L=m(u L, v L) \tag{1}
\end{equation*}
$$

- $m(u, v)$ is: (i) increasing in both arguments; (ii) strictly concave and (3) linearly homogeneous
- In every period, a fraction $m(u L, v L) / v L$ of vacancies are filled, and a fraction $m(u L, v L) / u L$ of unemployed workers find a job. Because m is linearly homogeneous, we can express these as follows:

$$
\begin{equation*}
\frac{m(u L, v L)}{v L}=\frac{L m(u, v)}{v L}=\frac{m(u, v)}{v}=m(u / v, 1) \tag{2}
\end{equation*}
$$

- Let $\theta \equiv v / u$, a measure of labor market 'tightness'. Thus:

$$
\begin{align*}
\text { Prob. of filling a vacancy } & =q(\theta) \tag{3}\\
\text { Prob. of finding a job } & =\theta q(\theta) \tag{4}
\end{align*}
$$

Duration formula

- $\theta q(\theta)$ is the probability that that an unemployed worker finds a job (let me denote this probability by p)
- Suppose there's an unemployed individual in period t
- With probability p he has a 1 period unemployment spell
- With probability $(1-p) p$ he has a 2 period unemployment spell
- With probability $(1-p)^{2} p$ he has a 3 period unemployment spell, and so on...

$$
\begin{align*}
\text { avg duration } \equiv Z & =p \cdot 1+p(1-p) \cdot 2+p(1-p)^{2} \cdot 3+\cdots \tag{5}\\
Z & =p\left[1+2(1-p)+3(1-p)^{2}+4(1-p)^{3}+\cdots\right] \tag{6}\\
Z(1-p) & =p\left[(1-p)+2(1-p)^{2}+3(1-p)^{3}+4(1-p)^{4}+\cdots\right] \tag{7}
\end{align*}
$$

- Subtracting (7) from (6):

$$
\begin{gather*}
Z[1-(1-p)]=p\left[1+(1-p)+(1-p)^{2}+(1-p)^{3}+\cdots\right] \\
Z p=\frac{p}{1-(1-p)} \\
Z=\frac{1}{p} \tag{8}
\end{gather*}
$$

The Beveridge curve

- A match between a worker and a firm can ends due to an exogenous 'death shock' that arrives with probability λ. This is the only source of job destruction in this simplified model
- Firm-worker pairs experiencing the death shock are randomly selected \rightarrow every period the number of workers moving into unemployment is:

$$
\begin{equation*}
\lambda(1-u) L \tag{9}
\end{equation*}
$$

and the number of workers moving out of unemployment is:

$$
\begin{equation*}
\theta q(\theta) u L \tag{10}
\end{equation*}
$$

by the law of large numbers

- The law of motion of the unemployment rate u is: $\dot{u}=\lambda(1-u)-\theta q(\theta) u$
- In steady state when the flow of workers finding a job exactly matches the flow of workers experiencing termination shocks $(\dot{u}=0)$ we have:

$$
\begin{equation*}
\dot{u}=0 \quad \Leftrightarrow \quad u=\frac{\lambda}{\lambda+\theta q(\theta)} \tag{BeveridgeCurve}
\end{equation*}
$$

- This is a downward-sloping schedule (show this using the implicit function theorem). Higher θ increases the probability of finding a job

Employment flows

$\theta q(\theta) u L$

Job creation

- An unmatched firm (wanting to hire a worker) pays a fixed cost c per period to post a vacancy
- There are two possible states for a firm: (i) occupied job or (ii) open vacancy
- Let J denote the expected PDV from an occupied job and V the expected PDV of a vacancy. Two Bellman equations are satisfied in steady state:

$$
\begin{align*}
J & =y-w+\beta[\lambda V+(1-\lambda) J] \tag{11}\\
V & =-c+\beta[q(\theta) J+(1-q(\theta)) V] \tag{12}
\end{align*}
$$

- We assumed that the size of the economy is L, but we haven't said how many firms are operating there
- Free entry \rightarrow firms will enter the market up to the point in which the value of an open vacancy, V, is equal to 0
- Using this assumption in equation (12) $\rightarrow J=\frac{c}{\beta q(\theta)}$

Job creation

- Substituting the value of J in equation (11) and using the fact that $\beta=(1+r)^{-1}$:

$$
\begin{equation*}
\frac{y-w}{r+\lambda}=\frac{c}{q(\theta)} \tag{JCcurve}
\end{equation*}
$$

- $(y-w) /(r+\lambda)$ is the marginal benefit of hiring a worker, discounted using the interest rate, r, and taking into account that at any moment there's a probability λ that the match will end
- $1 / q(\theta)$ is the expected amount of time it takes to fill a vacancy \rightarrow expected cost of having a vacancy open is $c / q(\theta)$
- Rewrite the Job creation curve as:

$$
\begin{equation*}
w=y-\frac{r+\lambda}{q(\theta)} c \tag{13}
\end{equation*}
$$

- Remember that $q^{\prime}(\theta)<0$

$$
\begin{equation*}
\theta \uparrow \Rightarrow q(\theta) \downarrow \Rightarrow \frac{r+\lambda}{q(\theta)} c \uparrow \Rightarrow w \downarrow \tag{14}
\end{equation*}
$$

- Intuitively, if $w \downarrow \Rightarrow$ firms open more vacancies $\Rightarrow \theta \equiv v / u \uparrow$

Workers

- A worker earns w when employed, and searches for a job when unemployed, obtaining a flow income z (value of leisure/unemployment benefit/production in the informal sector)
- Similarly to the case of the firms, a worker can be in two states: (i) employed or (ii) unemployed
- The expected pdv of employed and unemployed workers are given by:

$$
\begin{align*}
& E=w+\beta[\lambda U+(1-\lambda) E] \tag{15}\\
& U=z+\beta[\theta q(\theta) E+(1-\theta q(\theta)) U] \tag{16}
\end{align*}
$$

- $r U$ can be interpreted as the expected return on the worker's human capital during search \rightarrow the minimum compensation required to search for a job
- Workers stay on their jobs as long as $E \geq U$
- A sufficient condition for this inequality to hold is $y>z$

Wage determination

- A match between a firm and worker yields a total return $>V+U \rightarrow$ economic rent
- Note that V is the outside option for the firm, and U is the outside option for the worker
- This rent is split between the firm and the worker by means of a Nash bargaining solution. Letting $\phi \in[0,1]$ denote the bargaining power of the worker and $S=(J-V)+(E-U)$ denote the total match surplus
- The match surplus is shared according to the following equation:

$$
\begin{gather*}
\max _{(E-U), J}(E-U)^{\phi} J^{1-\phi} \tag{17}\\
\text { s.t.: } \\
E+J-U=S \tag{18}
\end{gather*}
$$

- The solution of this problem yields:

$$
\begin{align*}
& E-U=\phi S \tag{19}\\
& J=(1-\phi) S \tag{20}
\end{align*}
$$

- The worker receives a share ϕ of the total surplus. The remaining part goes to the firm

A lot of algebra...

- From equation (15) solve for E (use the fact that $\beta=(1+r)^{-1}$):

$$
\begin{align*}
E & =w+\beta[\lambda U+(1-\lambda) E] \tag{21}\\
& \rightarrow E=\frac{1+r}{r+\lambda}[w+\beta \lambda U] \tag{22}
\end{align*}
$$

- This implies that $E-U$ is (again, use the fact that $\beta=(1+r)^{-1}$):

$$
\begin{equation*}
E-U=\left[\frac{1+r}{r+\lambda}\right] w-\left[\frac{r}{r+\lambda}\right] U \tag{23}
\end{equation*}
$$

- From equation (11) solve for J (use the fact that $V=0$):

$$
\begin{align*}
J= & y-w+\beta[\lambda V+(1-\lambda) J] \tag{24}\\
& \rightarrow J=\frac{1+r}{r+\lambda}[y-w] \tag{25}
\end{align*}
$$

- Substitute these into the surplus equation $S=(E-U)+J$:

$$
\begin{equation*}
S=\frac{1}{r+\lambda}[y-r U] \tag{26}
\end{equation*}
$$

- Finally, use the surplus splitting rule $(E-U)=\phi S$:

$$
\begin{equation*}
\left[\frac{1+r}{r+\lambda}\right] w-\left[\frac{r}{r+\lambda}\right] U=\frac{\phi}{r+\lambda}[y-r U] \tag{27}
\end{equation*}
$$

A lot of algebra...

- Solving for w we have:

$$
\begin{equation*}
w=\frac{r}{1+r} U+\frac{\phi}{1+r}(y-r U) \tag{28}
\end{equation*}
$$

- We can now solve for $r U /(1+r)$. Start from the Bellman equation for unemployed workers, equation (16)

$$
\begin{gather*}
U=z+\beta[\theta q(\theta) E+(1-\theta q(\theta)) U] \tag{29}\\
\text { rearrange } \\
(1-\beta) U=z+\beta \theta q(\theta)(E-U) \tag{30}\\
\text { use } \beta=(1+r)^{-1} \\
\frac{r}{1+r} U=z+\frac{\theta q(\theta)}{1+r}(E-U) \tag{31}
\end{gather*}
$$

- From the Nash bargaining solution you have that $E-U=\phi S$ and $J=(1-\phi) S$. This implies that,

$$
\begin{equation*}
E-U=\frac{\phi}{1-\phi} J \tag{33}
\end{equation*}
$$

- And from the top page of slide \# 12 (again, replacing $\beta=(1+r)^{-1}$), we have,

$$
\begin{equation*}
E-U=\frac{\phi}{1-\phi} \frac{(1+r) c}{q(\theta)} \tag{34}
\end{equation*}
$$

- Replacing in equation (31):

$$
\begin{equation*}
\frac{r}{1+r} U=z+\frac{\phi}{1-\phi} \theta c \tag{35}
\end{equation*}
$$

A lot of algebra...

- Finally, replacing equation (35) into equation (28) we have:

$$
\begin{equation*}
w=z+\phi(y-z+\theta c) \tag{36}
\end{equation*}
$$

- We call this the wage curve equation

Wage curve

- After all this algebra we end up with an expression for the wage that looks like this:

$$
\begin{equation*}
w=z+\phi(y-z+\theta c) \tag{WC}
\end{equation*}
$$

- It means that the worker receives his outside option z (unemployment benefits, for instance) plus a fraction ϕ of the firm's output in excess of z and the average hiring cost per unemployed worker $c \theta=\frac{c v}{u}$
- Workers are rewarded for the saving of hiring costs that the firm enjoys when a job is formed
- Notice that the wage curve is upward sloping in the $\{w, \theta\}$ space. Higher θ means that the probability of leaving unemployment, $\theta q(\theta)$, is higher, which in turn means that the bargaining power of the worker is higher \rightarrow higher w

Steady-state equilibrium

- A steady-state equilibrium is a triple $\{u, \theta, w\}$ that satisfies: (1) the Beveridge curve, (2) the job creation condition and the (3) wage curve, given an interest rate, r
- Putting together the WC and the JC curve in $\{w, \theta\}$-space we get:

- Equilibrium θ is independent of the level of unemployment

Steady-state equilibrium

- Substituting the WC into the JC curve:

Comparative statics: increase in y

- For reference, these are the 3 main equations of the model:

$$
\begin{gathered}
u=\frac{\lambda}{\lambda+\theta q(\theta)} \\
w=y-\frac{r+\lambda}{q(\theta)} c \\
w=z+\phi(y-z+\theta c)
\end{gathered}
$$

- Suppose that firms become more productive $y \uparrow$ (or that we're on business cycle boom). What happens?
- $y \uparrow \Rightarrow \mathrm{JC}$ shifts up and to the right (firms want to open more vacancies)
- Notice that the WC also shifts up, but less so than JC (because $\phi \in(0,1)$)
- Both w and $\theta \uparrow$
- In the $v-u$ space, a higher θ rotates the JC curve counterclockwise \curvearrowleft
- $\Rightarrow v \uparrow$ and $u \downarrow$

Comparative statics: increase in z

- For reference, these are the 3 main equations of the model:

$$
\begin{gathered}
u=\frac{\lambda}{\lambda+\theta q(\theta)} \\
w=y-\frac{r+\lambda}{q(\theta)} c \\
w=z+\phi(y-z+\theta c)
\end{gathered}
$$

- Suppose that unemployment benefits $z \uparrow$ What happens?
- $z \uparrow \Rightarrow$ WC shifts up
- $w \uparrow$ and $\theta \downarrow$
- JC is unaffected (z does not appear in the JC equation)
- In the $v-u$ space, a lower θ rotates the JC curve clockwise \curvearrowright
- $\Rightarrow v \downarrow$ and $u \uparrow$

Key questions:

- What is the mechanism that generates unemployment in the search \& matching model?
- What is the Beveridge curve? Why do we need it in the search \& matching model?
- How are wages determined in the search \& matching model?
- What happens to equilibrium wages, unemployment and the vacancies/unemployment ratio if the government decides to increase unemployment benefits?
- What happens to equilibrium wages, unemployment and the vacancies/unemployment ratio if the productivity of firms decreases?

References

- Pissarides, C. A. 2000. Equilibrium Unemployment Theory, 2nd ed. MIT Press, Chapter 1.

